处理给规范的文字
你要处理的大多数文字都是比较干净、格式规范的。格式规范的文字通常可以满足一些需求,不过究竟什么是“格式混乱”,什么算“格式规范”,确实因人而异。 通常,格式规范的文字具有以下特点:
- 使用一个标准字体(不包含手写体、草书,或者十分“花哨的”字体) • 虽然被复印或拍照,字体还是很清晰,没有多余的痕迹或污点
- 排列整齐,没有歪歪斜斜的字
- 没有超出图片范围,也没有残缺不全,或紧紧贴在图片的边缘
文字的一些格式问题在图片预处理时可以进行解决。例如,可以把图片转换成灰度图,调 整亮度和对比度,还可以根据需要进行裁剪和旋转(详情请关注图像与信号处理),但是,这些做法在进行更具扩展性的 训练时会遇到一些限制。
格式规范文字的理想示例
通过下面的命令运行 Tesseract,读取文件并把结果写到一个文本文件中: `tesseract test.jpg text
cat text.txt
即可显示结果。
识别结果很准确,不过符号^
和*
分别被表示成了双引号和单引号。大体上可以让你很舒服地阅读。
通过Python代码实现
import pytesseract
from PIL import Image
image = Image.open('test.jpg')
text = pytesseract.image_to_string(image)
print text
运行结果:
This is some text, written in Arial, that will be read by
Tesseract. Here are some symbols: !@#$%"&*()
对图片进行阈值过滤和降噪处理(了解即可)
很多时候我们在网上会看到这样的图片:
Tesseract 不能完整处理这个图片,主要是因为图片背景色是渐变的,最终结果是这样:
随着背景色从左到右不断加深,文字变得越来越难以识别,Tesseract 识别出的 每一行的最后几个字符都是错的。
遇到这类问题,可以先用 Python 脚本对图片进行清理。利用 Pillow 库,我们可以创建一个 阈值过滤器来去掉渐变的背景色,只把文字留下来,从而让图片更加清晰,便于 Tesseract 读取:
from PIL import Image
import subprocess
def cleanFile(filePath, newFilePath):
image = Image.open(filePath)
# 对图片进行阈值过滤,然后保存
image = image.point(lambda x: 0 if x<143 else 255)
image.save(newFilePath)
# 调用系统的tesseract命令对图片进行OCR识别
subprocess.call(["tesseract", newFilePath, "output"])
# 打开文件读取结果
file = open("output.txt", 'r')
print(file.read())
file.close()
cleanFile("text2.jpg", "text2clean.png")
通过一个阈值对前面的“模糊”图片进行过滤的结果
除了一些标点符号不太清晰或丢失了,大部分文字都被读出来了。Tesseract 给出了最好的 结果: